Evaluations of multilinear polynomials on low rank Jordan algebras

نویسندگان

چکیده

In this paper, we prove the generalized Kaplansky conjecture for Jordan algebras of type Jn, in particular self-adjoint 2 × matrices over R, C, H, and O. fact, that image multilinear polynomial must be either {0}, space V pure elements, or Jn.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Low-Rank Tensors on Graphs & Applications

We propose a new framework for the analysis of lowrank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multilinear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization...

متن کامل

Random Projections for Low Multilinear Rank Tensors

We proposed two randomized tensor algorithms for reducing multilinear ranks in the Tucker format. The basis of these randomized algorithms is from the randomized SVD of Halko, Martinsson and Tropp [9]. Here we provide randomized versions of the higher order SVD and higher order orthogonal iteration. Moreover, we provide a sharper probabilistic error bounds for the matrix low rank approximation....

متن کامل

Low Rank Perturbation of Jordan Structure

Let A be a matrix and λ0 be one of its eigenvalues having g elementary Jordan blocks in the Jordan canonical form of A. We show that for most matrices B satisfying rank (B) ≤ g, the Jordan blocks of A+B with eigenvalue λ0 are just the g− rank (B) smallest Jordan blocks of A with eigenvalue λ0. The set of matrices for which this behavior does not happen is explicitly characterized through a scal...

متن کامل

Structure-Preserving Low Multilinear Rank Approximation of Antisymmetric Tensors

This paper is concerned with low multilinear rank approximations to antisymmetric tensors, that is, multivariate arrays for which the entries change sign when permuting pairs of indices. We show which ranks can be attained by an antisymmetric tensor and discuss the adaption of existing approximation algorithms to preserve antisymmetry, most notably a Jacobi algorithm. Particular attention is pa...

متن کامل

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2021

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.2021221